Copied to
clipboard

?

G = C42.237D10order 320 = 26·5

57th non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.237D10, C4⋊C4.206D10, (D5×C42)⋊11C2, C42.C216D5, D208C435C2, D102Q836C2, C4.D2024C2, C42D20.12C2, Dic53Q835C2, D10.16(C4○D4), C20.128(C4○D4), (C4×C20).195C22, (C2×C10).235C24, (C2×C20).506C23, C4.19(Q82D5), D10.13D433C2, Dic5.75(C4○D4), (C2×D20).169C22, C4⋊Dic5.241C22, C22.256(C23×D5), D10⋊C4.60C22, (C2×Dic5).379C23, (C4×Dic5).150C22, C10.D4.51C22, (C22×D5).101C23, C510(C23.36C23), (C2×Dic10).185C22, C2.86(D5×C4○D4), C4⋊C47D535C2, C4⋊C4⋊D533C2, (C5×C42.C2)⋊8C2, C10.197(C2×C4○D4), C2.22(C2×Q82D5), (C2×C4×D5).134C22, (C2×C4).79(C22×D5), (C5×C4⋊C4).190C22, SmallGroup(320,1363)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.237D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C42 — C42.237D10
C5C2×C10 — C42.237D10

Subgroups: 830 in 234 conjugacy classes, 99 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×10], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×15], D4 [×6], Q8 [×2], C23 [×3], D5 [×4], C10 [×3], C42, C42 [×5], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×5], C2×D4 [×3], C2×Q8, Dic5 [×2], Dic5 [×4], C20 [×2], C20 [×6], D10 [×2], D10 [×8], C2×C10, C2×C42, C42⋊C2 [×2], C4×D4 [×3], C4×Q8, C4⋊D4, C22⋊Q8, C22.D4 [×2], C4.4D4, C42.C2, C422C2 [×2], Dic10 [×2], C4×D5 [×10], D20 [×6], C2×Dic5 [×3], C2×Dic5 [×2], C2×C20 [×3], C2×C20 [×4], C22×D5, C22×D5 [×2], C23.36C23, C4×Dic5 [×3], C4×Dic5 [×2], C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×3], C2×C4×D5 [×2], C2×D20, C2×D20 [×2], D5×C42, C4.D20, Dic53Q8, C4⋊C47D5 [×2], D208C4, D208C4 [×2], D10.13D4 [×2], C42D20, D102Q8, C4⋊C4⋊D5 [×2], C5×C42.C2, C42.237D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×6], C24, D10 [×7], C2×C4○D4 [×3], C22×D5 [×7], C23.36C23, Q82D5 [×2], C23×D5, C2×Q82D5, D5×C4○D4 [×2], C42.237D10

Generators and relations
 G = < a,b,c,d | a4=b4=d2=1, c10=a2, ab=ba, cac-1=dad=ab2, cbc-1=dbd=a2b, dcd=a2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 60 11 50)(2 126 12 136)(3 42 13 52)(4 128 14 138)(5 44 15 54)(6 130 16 140)(7 46 17 56)(8 132 18 122)(9 48 19 58)(10 134 20 124)(21 139 31 129)(22 55 32 45)(23 121 33 131)(24 57 34 47)(25 123 35 133)(26 59 36 49)(27 125 37 135)(28 41 38 51)(29 127 39 137)(30 43 40 53)(61 153 71 143)(62 84 72 94)(63 155 73 145)(64 86 74 96)(65 157 75 147)(66 88 76 98)(67 159 77 149)(68 90 78 100)(69 141 79 151)(70 92 80 82)(81 108 91 118)(83 110 93 120)(85 112 95 102)(87 114 97 104)(89 116 99 106)(101 154 111 144)(103 156 113 146)(105 158 115 148)(107 160 117 150)(109 142 119 152)
(1 67 27 106)(2 78 28 117)(3 69 29 108)(4 80 30 119)(5 71 31 110)(6 62 32 101)(7 73 33 112)(8 64 34 103)(9 75 35 114)(10 66 36 105)(11 77 37 116)(12 68 38 107)(13 79 39 118)(14 70 40 109)(15 61 21 120)(16 72 22 111)(17 63 23 102)(18 74 24 113)(19 65 25 104)(20 76 26 115)(41 150 126 100)(42 141 127 91)(43 152 128 82)(44 143 129 93)(45 154 130 84)(46 145 131 95)(47 156 132 86)(48 147 133 97)(49 158 134 88)(50 149 135 99)(51 160 136 90)(52 151 137 81)(53 142 138 92)(54 153 139 83)(55 144 140 94)(56 155 121 85)(57 146 122 96)(58 157 123 87)(59 148 124 98)(60 159 125 89)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(38 40)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 140)(50 139)(51 138)(52 137)(53 136)(54 135)(55 134)(56 133)(57 132)(58 131)(59 130)(60 129)(61 67)(62 66)(63 65)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(81 141)(82 160)(83 159)(84 158)(85 157)(86 156)(87 155)(88 154)(89 153)(90 152)(91 151)(92 150)(93 149)(94 148)(95 147)(96 146)(97 145)(98 144)(99 143)(100 142)(101 105)(102 104)(106 120)(107 119)(108 118)(109 117)(110 116)(111 115)(112 114)

G:=sub<Sym(160)| (1,60,11,50)(2,126,12,136)(3,42,13,52)(4,128,14,138)(5,44,15,54)(6,130,16,140)(7,46,17,56)(8,132,18,122)(9,48,19,58)(10,134,20,124)(21,139,31,129)(22,55,32,45)(23,121,33,131)(24,57,34,47)(25,123,35,133)(26,59,36,49)(27,125,37,135)(28,41,38,51)(29,127,39,137)(30,43,40,53)(61,153,71,143)(62,84,72,94)(63,155,73,145)(64,86,74,96)(65,157,75,147)(66,88,76,98)(67,159,77,149)(68,90,78,100)(69,141,79,151)(70,92,80,82)(81,108,91,118)(83,110,93,120)(85,112,95,102)(87,114,97,104)(89,116,99,106)(101,154,111,144)(103,156,113,146)(105,158,115,148)(107,160,117,150)(109,142,119,152), (1,67,27,106)(2,78,28,117)(3,69,29,108)(4,80,30,119)(5,71,31,110)(6,62,32,101)(7,73,33,112)(8,64,34,103)(9,75,35,114)(10,66,36,105)(11,77,37,116)(12,68,38,107)(13,79,39,118)(14,70,40,109)(15,61,21,120)(16,72,22,111)(17,63,23,102)(18,74,24,113)(19,65,25,104)(20,76,26,115)(41,150,126,100)(42,141,127,91)(43,152,128,82)(44,143,129,93)(45,154,130,84)(46,145,131,95)(47,156,132,86)(48,147,133,97)(49,158,134,88)(50,149,135,99)(51,160,136,90)(52,151,137,81)(53,142,138,92)(54,153,139,83)(55,144,140,94)(56,155,121,85)(57,146,122,96)(58,157,123,87)(59,148,124,98)(60,159,125,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(38,40)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,141)(82,160)(83,159)(84,158)(85,157)(86,156)(87,155)(88,154)(89,153)(90,152)(91,151)(92,150)(93,149)(94,148)(95,147)(96,146)(97,145)(98,144)(99,143)(100,142)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114)>;

G:=Group( (1,60,11,50)(2,126,12,136)(3,42,13,52)(4,128,14,138)(5,44,15,54)(6,130,16,140)(7,46,17,56)(8,132,18,122)(9,48,19,58)(10,134,20,124)(21,139,31,129)(22,55,32,45)(23,121,33,131)(24,57,34,47)(25,123,35,133)(26,59,36,49)(27,125,37,135)(28,41,38,51)(29,127,39,137)(30,43,40,53)(61,153,71,143)(62,84,72,94)(63,155,73,145)(64,86,74,96)(65,157,75,147)(66,88,76,98)(67,159,77,149)(68,90,78,100)(69,141,79,151)(70,92,80,82)(81,108,91,118)(83,110,93,120)(85,112,95,102)(87,114,97,104)(89,116,99,106)(101,154,111,144)(103,156,113,146)(105,158,115,148)(107,160,117,150)(109,142,119,152), (1,67,27,106)(2,78,28,117)(3,69,29,108)(4,80,30,119)(5,71,31,110)(6,62,32,101)(7,73,33,112)(8,64,34,103)(9,75,35,114)(10,66,36,105)(11,77,37,116)(12,68,38,107)(13,79,39,118)(14,70,40,109)(15,61,21,120)(16,72,22,111)(17,63,23,102)(18,74,24,113)(19,65,25,104)(20,76,26,115)(41,150,126,100)(42,141,127,91)(43,152,128,82)(44,143,129,93)(45,154,130,84)(46,145,131,95)(47,156,132,86)(48,147,133,97)(49,158,134,88)(50,149,135,99)(51,160,136,90)(52,151,137,81)(53,142,138,92)(54,153,139,83)(55,144,140,94)(56,155,121,85)(57,146,122,96)(58,157,123,87)(59,148,124,98)(60,159,125,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(38,40)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,141)(82,160)(83,159)(84,158)(85,157)(86,156)(87,155)(88,154)(89,153)(90,152)(91,151)(92,150)(93,149)(94,148)(95,147)(96,146)(97,145)(98,144)(99,143)(100,142)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114) );

G=PermutationGroup([(1,60,11,50),(2,126,12,136),(3,42,13,52),(4,128,14,138),(5,44,15,54),(6,130,16,140),(7,46,17,56),(8,132,18,122),(9,48,19,58),(10,134,20,124),(21,139,31,129),(22,55,32,45),(23,121,33,131),(24,57,34,47),(25,123,35,133),(26,59,36,49),(27,125,37,135),(28,41,38,51),(29,127,39,137),(30,43,40,53),(61,153,71,143),(62,84,72,94),(63,155,73,145),(64,86,74,96),(65,157,75,147),(66,88,76,98),(67,159,77,149),(68,90,78,100),(69,141,79,151),(70,92,80,82),(81,108,91,118),(83,110,93,120),(85,112,95,102),(87,114,97,104),(89,116,99,106),(101,154,111,144),(103,156,113,146),(105,158,115,148),(107,160,117,150),(109,142,119,152)], [(1,67,27,106),(2,78,28,117),(3,69,29,108),(4,80,30,119),(5,71,31,110),(6,62,32,101),(7,73,33,112),(8,64,34,103),(9,75,35,114),(10,66,36,105),(11,77,37,116),(12,68,38,107),(13,79,39,118),(14,70,40,109),(15,61,21,120),(16,72,22,111),(17,63,23,102),(18,74,24,113),(19,65,25,104),(20,76,26,115),(41,150,126,100),(42,141,127,91),(43,152,128,82),(44,143,129,93),(45,154,130,84),(46,145,131,95),(47,156,132,86),(48,147,133,97),(49,158,134,88),(50,149,135,99),(51,160,136,90),(52,151,137,81),(53,142,138,92),(54,153,139,83),(55,144,140,94),(56,155,121,85),(57,146,122,96),(58,157,123,87),(59,148,124,98),(60,159,125,89)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(38,40),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,140),(50,139),(51,138),(52,137),(53,136),(54,135),(55,134),(56,133),(57,132),(58,131),(59,130),(60,129),(61,67),(62,66),(63,65),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(81,141),(82,160),(83,159),(84,158),(85,157),(86,156),(87,155),(88,154),(89,153),(90,152),(91,151),(92,150),(93,149),(94,148),(95,147),(96,146),(97,145),(98,144),(99,143),(100,142),(101,105),(102,104),(106,120),(107,119),(108,118),(109,117),(110,116),(111,115),(112,114)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
00403300
000100
000010
000001
,
1390000
0400000
0032000
0003200
0000400
0000040
,
1390000
1400000
001000
00104000
000016
0000356
,
100000
1400000
001000
00104000
0000400
000061

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,33,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,39,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,1,10,0,0,0,0,0,40,0,0,0,0,0,0,1,35,0,0,0,0,6,6],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,10,0,0,0,0,0,40,0,0,0,0,0,0,40,6,0,0,0,0,0,1] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T5A5B10A···10F20A···20L20M···20T
order122222224···4444444444444445510···1020···2020···20
size1111101020202···244445555101010102020222···24···48···8

56 irreducible representations

dim1111111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4C4○D4D10D10Q82D5D5×C4○D4
kernelC42.237D10D5×C42C4.D20Dic53Q8C4⋊C47D5D208C4D10.13D4C42D20D102Q8C4⋊C4⋊D5C5×C42.C2C42.C2Dic5C20D10C42C4⋊C4C4C2
# reps11112321121244421248

In GAP, Magma, Sage, TeX

C_4^2._{237}D_{10}
% in TeX

G:=Group("C4^2.237D10");
// GroupNames label

G:=SmallGroup(320,1363);
// by ID

G=gap.SmallGroup(320,1363);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,346,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=a^2,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^9>;
// generators/relations

׿
×
𝔽